Minimum Description Length Induction, Bayesianism, and Kolmogorov Complexity
نویسندگان
چکیده
The relationship between the Bayesian approach and the minimum description length approach is established. We sharpen and clarify the general modeling principles minimum description length (MDL) and minimum message length (MML), abstracted as the ideal MDL principle and defined from Bayes’s rule by means of Kolmogorov complexity. The basic condition under which the ideal principle should be applied is encapsulated as the fundamental inequality, which in broad terms states that the principle is valid when the data are random, relative to every contemplated hypothesis and also these hypotheses are random relative to the (universal) prior. The ideal principle states that the prior probability associated with the hypothesis should be given by the algorithmic universal probability, and the sum of the log universal probability of the model plus the log of the probability of the data given the model should be minimized. If we restrict the model class to finite sets then application of the ideal principle turns into Kolmogorov’s minimal sufficient statistic. In general, we show that data compression is almost always the best strategy, both in model selection and prediction.
منابع مشابه
Ideal Mdl and Its Relation to Bayesianism 1
Statistics based inference methods like minimum message length (MML) and minimum description length (MDL), are widely applied approaches. They are the tools to use with particular machine learning praxis such as simulated annealing, genetic algorithms, genetic programming, artiicial neural networks, and the like. These methods select the hypothesis which minimizes the sum of the length of the d...
متن کاملMinimum complexity density estimation
The minimum complexity or minimum description-length criterion developed by Kolmogorov, Rissanen, Wallace, So&in, and others leads to consistent probability density estimators. These density estimators are defined to achieve the best compromise between likelihood and simplicity. A related issue is the compromise between accuracy of approximations and complexity relative to the sample size. An i...
متن کاملComplexity Approximation Principle
We propose a new inductive principle, which we call the complexity approximation principle (CAP). This principle is a natural generalization of Rissanen’s minimum description length (MDL) principle and Wallace’s minimum message length (MML) principle and is based on the notion of predictive complexity, a recent generalization of Kolmogorov complexity. Like the MDL principle, CAP can be regarded...
متن کاملA New Minimum Description Length
The minimum description length(MDL) method is one of the pioneer methods of parametric order estimation with a wide range of applications. We investigate the definition of two-stage MDL for parametric linear model sets and exhibit some drawbacks of the theory behind the existing MDL. We introduce a new description length which is inspired by the Kolmogorov complexity principle.
متن کاملDiscussion on Kolmogorov Complexity and Statistical Analysis
The question why and how probability theory can be applied to the real-world phenomena has been discussed for several centuries. When the algorithmic information theory was created, it became possible to discuss these problems in a more specific way. In particular, Li and Vitányi [6], Rissanen [3], Wallace and Dowe [7] have discussed the connection between Kolmogorov (algorithmic) complexity an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 46 شماره
صفحات -
تاریخ انتشار 2000